
Transform data
with dplyr

1 / 50

Your turn #0: Load data
1. Run the setup chunk
2. Take a look at the gapminder data

2 / 50

02:00

.small[

gapminder

�[38;5;246m# A tibble: 1,704 × 6�[39m

country continent year lifeExp pop gdpPercap

�[3m�[38;5;246m<fct>�[39m�[23m �[3m�[38;5;246m<fct>�[39m�

�[38;5;250m 1�[39m Afghanistan Asia �[4m1�[24m952 28.8

�[38;5;250m 2�[39m Afghanistan Asia �[4m1�[24m957 30.3

�[38;5;250m 3�[39m Afghanistan Asia �[4m1�[24m962 32.0

�[38;5;250m 4�[39m Afghanistan Asia �[4m1�[24m967 34.0

�[38;5;250m 5�[39m Afghanistan Asia �[4m1�[24m972 36.1

�[38;5;250m 6�[39m Afghanistan Asia �[4m1�[24m977 38.4

[38;5;250m 7 [39m Afghanistan Asia [4m1 [24m982 39 9
3 / 50

The tidyverse

4 / 50

The tidyverse

5 / 50

dplyr: verbs for manipulating data

Extract rows with filter()

Extract columns with select()

Arrange/sort rows with arrange()

Make new columns with mutate()

Make group summaries with
group_by() |> summarize()

6 / 50

filter()

7 / 50

DATA = Data frame to
transform
... = One or more tests
filter() returns each row for which
the test is TRUE

filter()

Extract rows that meet some sort of test

8 / 50

country continent year
Afghanistan Asia 1952
Afghanistan Asia 1957
Afghanistan Asia 1962
Afghanistan Asia 1967
Afghanistan Asia 1972
… … …

country continent year
Denmark Europe 1952
Denmark Europe 1957
Denmark Europe 1962
Denmark Europe 1967
Denmark Europe 1972
Denmark Europe 1977

9 / 50

One = sets an argument

Two == tests if equal
returns TRUE or FALSE)

filter()

10 / 50

Logical tests
Test Meaning Test Meaning
x < y Less than x %in% y In (group membership)
x > y Greater than is.na(x) Is missing
== Equal to !is.na(x) Is not missing

x <= y Less than or equal to
x >= y Greater than or equal to
x != y Not equal to

11 / 50

Your turn #1: Filtering
Use filter() and logical tests to show…

1. The data for Canada
2. All data for countries in Oceania
3. Rows where the life expectancy is greater than 82

12 / 50

04:00

filter(gapminder, country == "Canada")

filter(gapminder, continent == "Oceania")

filter(gapminder, lifeExp > 82)

13 / 50

Using = instead of == Quote use

Common mistakes

14 / 50

filter() with multiple conditions
Extract rows that meet every test

15 / 50

country continent year
Afghanistan Asia 1952
Afghanistan Asia 1957
Afghanistan Asia 1962
Afghanistan Asia 1967
Afghanistan Asia 1972
… … …

country continent year
Denmark Europe 2002
Denmark Europe 2007

16 / 50

Boolean operators
Operator Meaning
a & b and
a | b or
!a not

17 / 50

Default is "and"
These do the same thing:

18 / 50

Your turn #2: Filtering
Use filter() and Boolean logical tests to show…

1. Canada before 1970
2. Countries where life expectancy in 2007 is below 50
3. Countries where life expectancy in 2007 is below 50 and are not in

Africa

19 / 50

04:00

filter(gapminder, country == "Canada", year < 1970)

filter(gapminder, year == 2007, lifeExp < 50)

filter(gapminder, year == 2007, lifeExp < 50,

 continent != "Africa")

20 / 50

Collapsing multiple tests
into one

Using multiple tests
instead of %in%

Common mistakes

21 / 50

VERB = dplyr function/verb
DATA = Data frame to
transform
... = Stuff the verb does

Common syntax
Every dplyr verb function follows the same pattern

First argument is a data frame; returns a data frame

22 / 50

DATA = Data frame to
transform
... = Columns to make

mutate()

Create new columns

23 / 50

country year gdpPercap pop
Afghanistan 1952 779.4453145 8425333
Afghanistan 1957 820.8530296 9240934
Afghanistan 1962 853.10071 10267083
Afghanistan 1967 836.1971382 11537966
Afghanistan 1972 739.9811058 13079460
… … … …

country year … gdp
Afghanistan 1952 … 6567086330
Afghanistan 1957 … 7585448670
Afghanistan 1962 … 8758855797
Afghanistan 1967 … 9648014150
Afghanistan 1972 … 9678553274
Afghanistan 1977 … 11697659231

24 / 50

country year gdpPercap pop
Afghanistan 1952 779.4453145 8425333
Afghanistan 1957 820.8530296 9240934
Afghanistan 1962 853.10071 10267083
Afghanistan 1967 836.1971382 11537966
Afghanistan 1972 739.9811058 13079460
… … … …

country year … gdp pop_mil
Afghanistan 1952 … 6567086330 8
Afghanistan 1957 … 7585448670 9
Afghanistan 1962 … 8758855797 10
Afghanistan 1967 … 9648014150 12
Afghanistan 1972 … 9678553274 13
Afghanistan 1977 … 11697659231 15

25 / 50

TEST = A logical test
VALUE_IF_TRUE = What
happens if test is true
VALUE_IF_FALSE = What
happens if test is false

ifelse()

Do conditional tests within mutate()

26 / 50

27 / 50

Your turn #3: Mutating
Use mutate() to…

1. Add an africa column that is TRUE if the country is on the African
continent

2. Add a column for logged GDP per capita (hint: use log())
3. Add an africa_asia column that says “Africa or Asia” if the

country is in Africa or Asia, and “Not Africa or Asia” if it’s not

28 / 50

05:00

mutate(gapminder, africa = ifelse(continent == "Africa",

TRUE, FALSE))

mutate(gapminder, log_gdpPercap = log(gdpPercap))

mutate(gapminder,

 africa_asia =

 ifelse(continent %in% c("Africa", "Asia"),

"Africa or Asia",

"Not Africa or Asia"))

29 / 50

What if you have multiple verbs?
Make a dataset for just 2002 and calculate logged GDP per capita

Solution 1: Intermediate variables

30 / 50

What if you have multiple verbs?
Make a dataset for just 2002 and calculate logged GDP per capita

Solution 2: Nested functions

31 / 50

What if you have multiple verbs?
Make a dataset for just 2002 and calculate logged GDP per capita

Solution 3: Pipes!

The |> operator (pipe) takes an object on the left
and passes it as the first argument of the function on the right

32 / 50

What if you have multiple verbs?
These do the same thing!

33 / 50

What if you have multiple verbs?
Make a dataset for just 2002 and calculate logged GDP per capita

Solution 3: Pipes!

34 / 50

|>

35 / 50

|> vs %>%

There are actually multiple pipes!
%>% was invented first, but requires a package to use

|> is part of base R

They're interchangeable 99% of the time
(Just be consistent)

36 / 50

country continent year lifeExp
Afghanistan Asia 1952 28.801
Afghanistan Asia 1957 30.332
Afghanistan Asia 1962 31.997
Afghanistan Asia 1967 34.02
… … … …

mean_life
59.47444

summarize()

Compute a table of summaries

37 / 50

country continent year lifeExp
Afghanistan Asia 1952 28.801
Afghanistan Asia 1957 30.332
Afghanistan Asia 1962 31.997
Afghanistan Asia 1967 34.02
Afghanistan Asia 1972 36.088
… … … …

mean_life min_life
59.47444 23.599

summarize()

38 / 50

Your turn #4: Summarizing
Use summarize() to calculate…

1. The first (minimum) year in the dataset
2. The last (maximum) year in the dataset
3. The number of rows in the dataset (use the cheatsheet)
4. The number of distinct countries in the dataset (use the

cheatsheet)

39 / 50

04:00

gapminder |>

 summarize(first = min(year),

 last = max(year),

 num_rows = n(),

 num_unique = n_distinct(country))

first last num_rows num_unique
1952 2007 1704 142

40 / 50

Your turn #5: Summarizing
Use filter() and summarize() to calculate

(1) the number of unique countries and
(2) the median life expectancy on the

African continent in 2007

41 / 50

04:00

gapminder |>

 filter(continent == "Africa", year == 2007) |>

 summarise(n_countries = n_distinct(country),

 med_le = median(lifeExp))

n_countries med_le
52 52.9265

42 / 50

group_by()

Put rows into groups based on values in a column

Nothing happens by itself!

Powerful when combined with summarize()

43 / 50

gapminder |>

 group_by(continent) |>

 summarize(n_countries = n_distinct(country))

continent n_countries
Africa 52
Americas 25
Asia 33
Europe 30
Oceania 2

44 / 50

city particle_size amount
New York Large 23
New York Small 14
London Large 22
London Small 16
Beijing Large 121
Beijing Small 56

mean sum n
42 252 6

45 / 50

city particle_size amount
New York Large 23
New York Small 14
London Large 22
London Small 16
Beijing Large 121
Beijing Small 56

city mean sum n
Beijing 88.5 177 2
London 19.0 38 2
New York 18.5 37 2

46 / 50

city particle_size amount
New York Large 23
New York Small 14
London Large 22
London Small 16
Beijing Large 121
Beijing Small 56

particle_size mean sum n
Large 55.33333 166 3
Small 28.66667 86 3

47 / 50

Your turn #6: Grouping and summarizing
Find the minimum, maximum, and median

life expectancy for each continent

Find the minimum, maximum, and median
life expectancy for each continent in 2007 only

48 / 50

05:00

gapminder |>

 group_by(continent) |>

 summarize(min_le = min(lifeExp),

 max_le = max(lifeExp),

 med_le = median(lifeExp))

gapminder |>

 filter(year == 2007) |>

 group_by(continent) |>

 summarize(min_le = min(lifeExp),

 max_le = max(lifeExp),

 med_le = median(lifeExp))

49 / 50

dplyr: verbs for manipulating data

Extract rows with filter()

Extract columns with select()

Arrange/sort rows with arrange()

Make new columns with mutate()

Make group summaries with
group_by() |> summarize()

50 / 50

