

# Regression and inference

**Session 2**

PMAP 8521: Program evaluation  
Andrew Young School of Policy Studies

# Plan for today

Drawing lines

Lines, Greek, and regression

Null worlds and statistical significance

# Drawing lines

# Essential parts of regression

Y

Outcome variable

Response variable

Dependent variable

Thing you want to  
explain or predict

X

Explanatory variable

Predictor variable

Independent variable

Thing you use to  
explain or predict Y

# Identify variables

A study examines the effect of smoking on lung cancer

Researchers predict genocides by looking at negative media coverage, revolutions in neighboring countries, and economic growth

You want to see if taking more AP classes in high school improves college grades

Netflix uses your past viewing history, the day of the week, and the time of the day to guess which show you want to watch next

# Two purposes of regression

## Prediction

Forecast the future

Focus is on  $Y$

Netflix trying to  
guess your next show

Predicting who will enroll in SNAP

## Explanation

Explain effect of  $X$  on  $Y$

Focus is on  $X$

Netflix looking at the effect of the  
time of day on show selection

Measuring the effect of  
SNAP on poverty reduction

# How?

**Plot X and Y**

**Draw a line that approximates the relationship**

**and that would plausibly work for data not in the sample!**

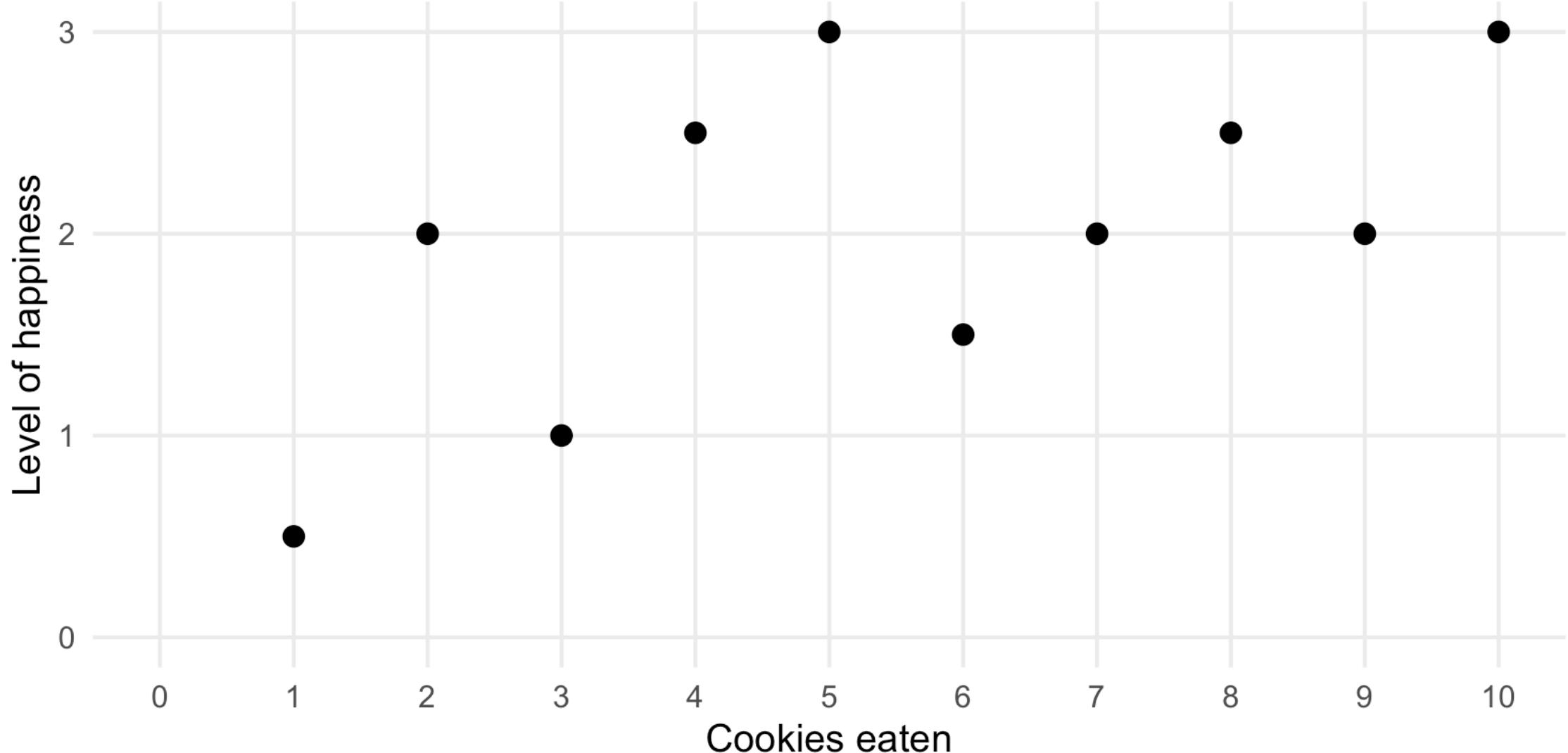
**Find mathy parts of the line**

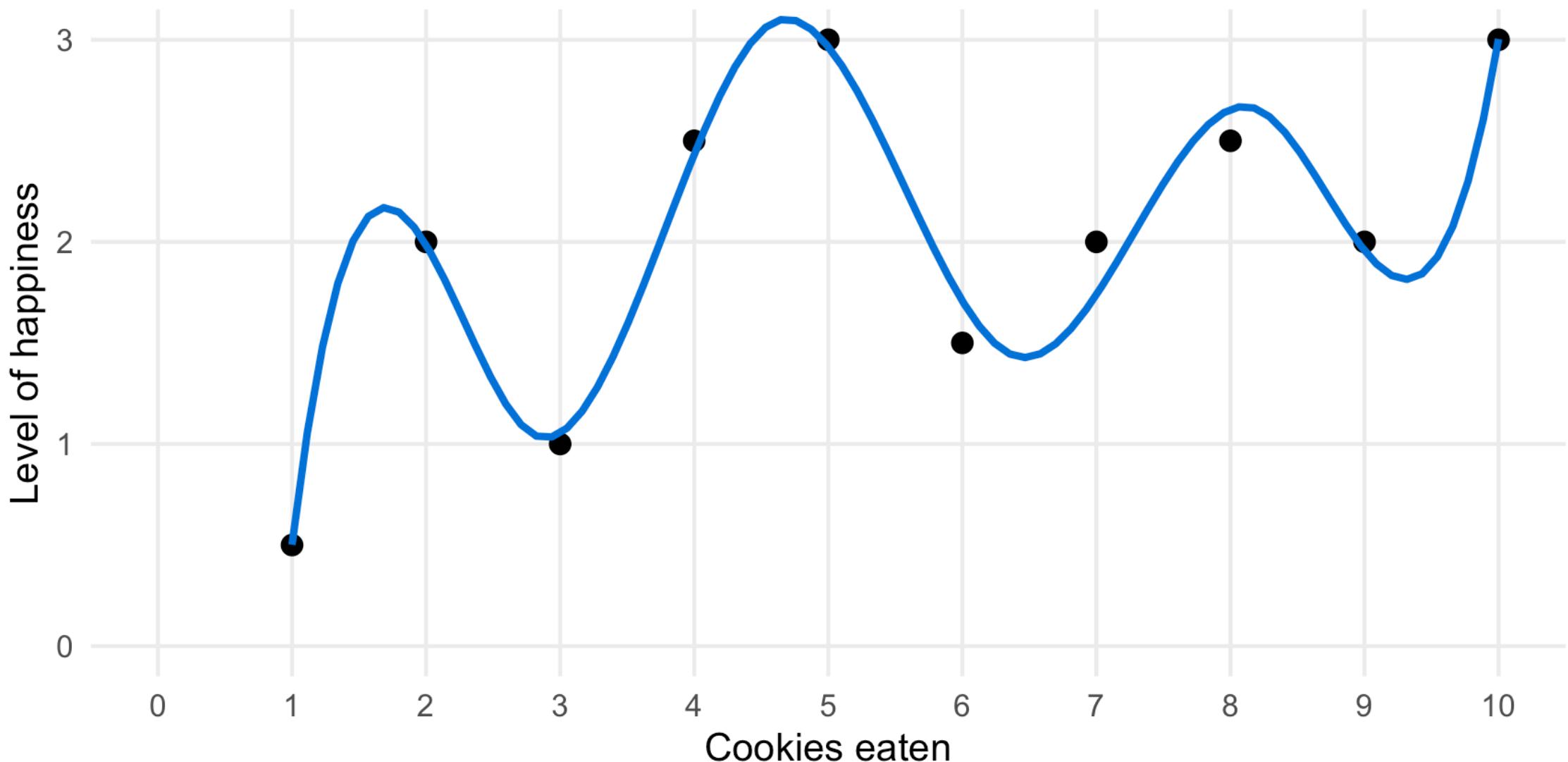
**Interpret the math**

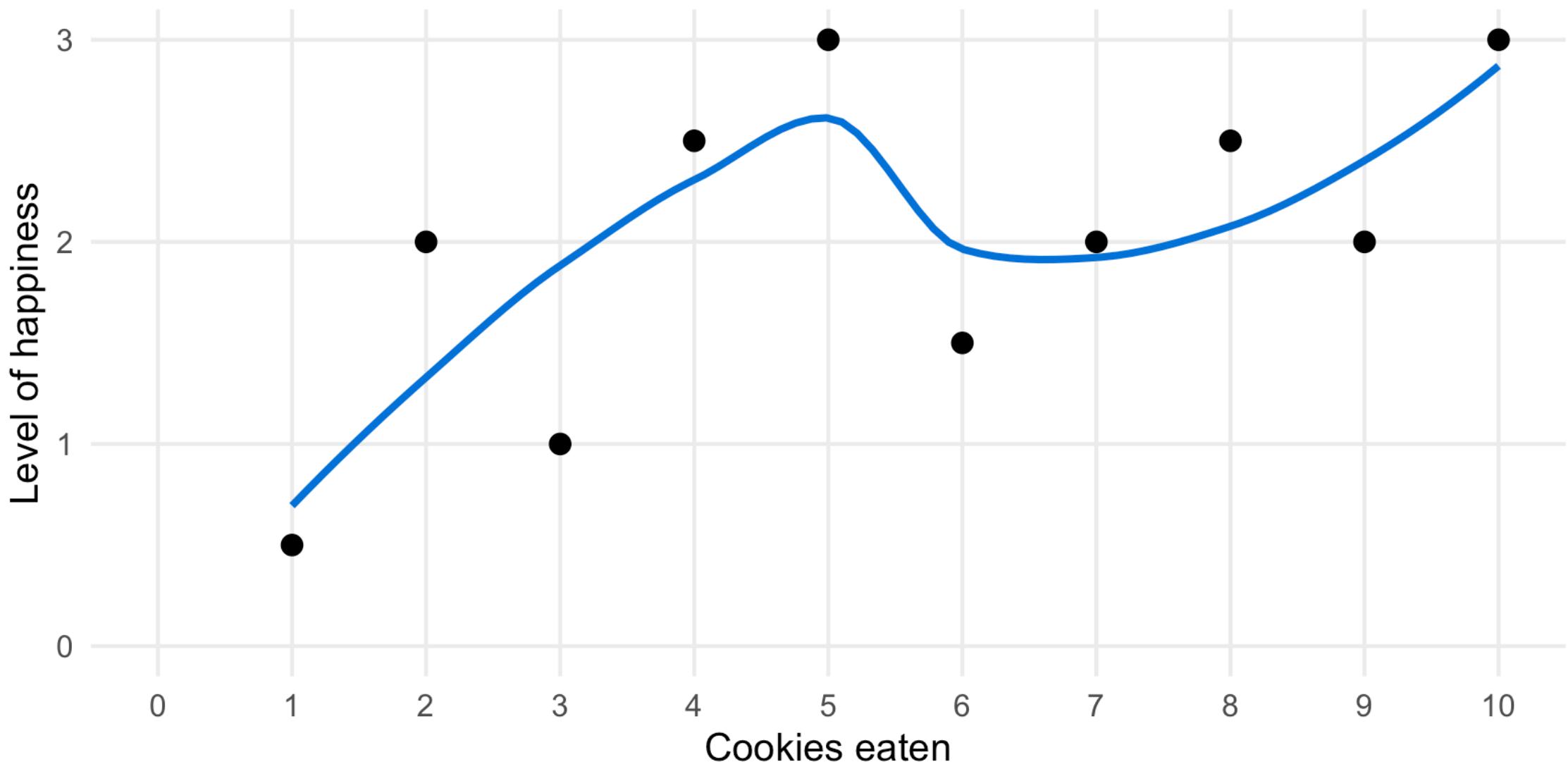
# Cookies and happiness

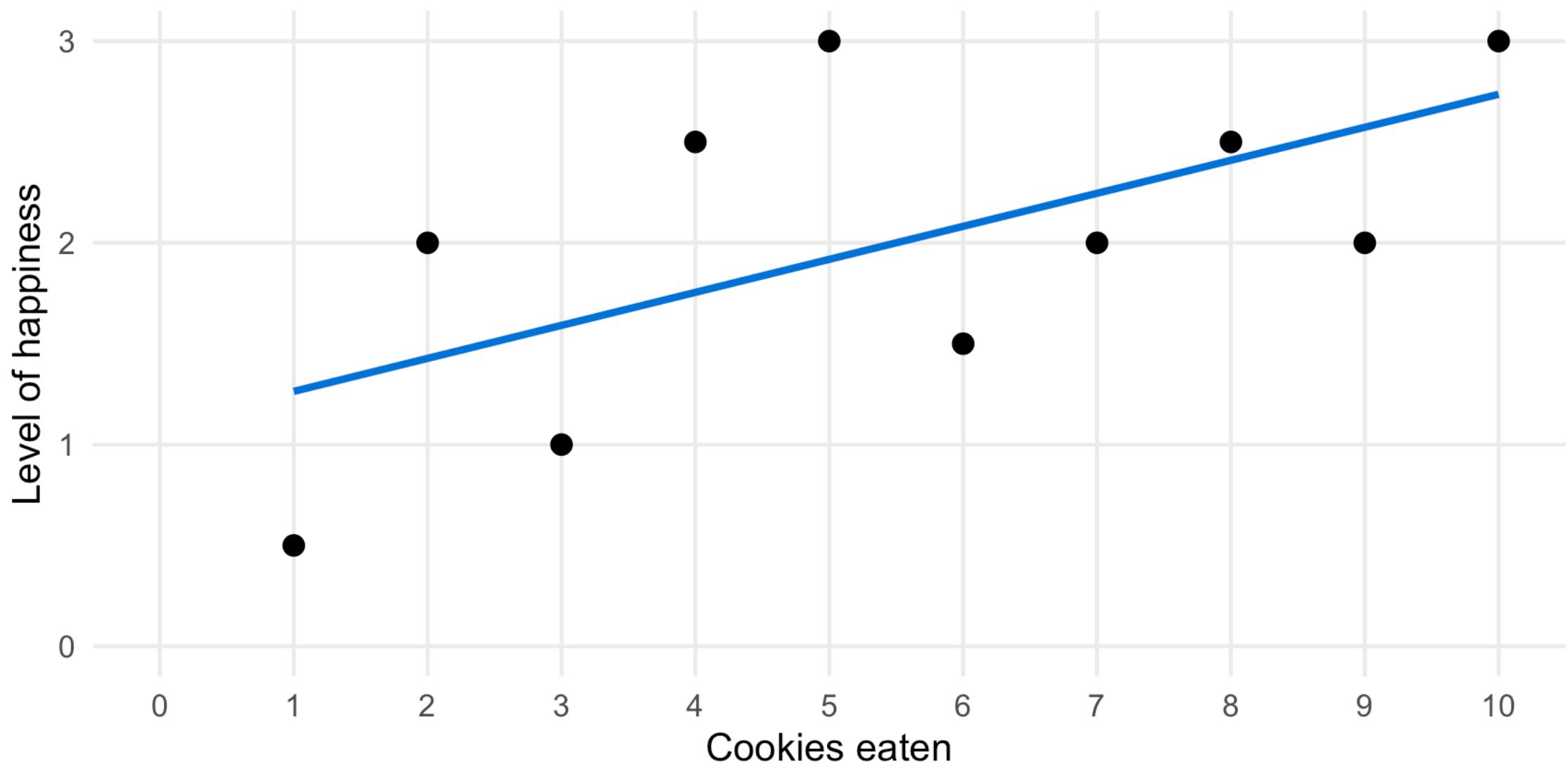
.center[

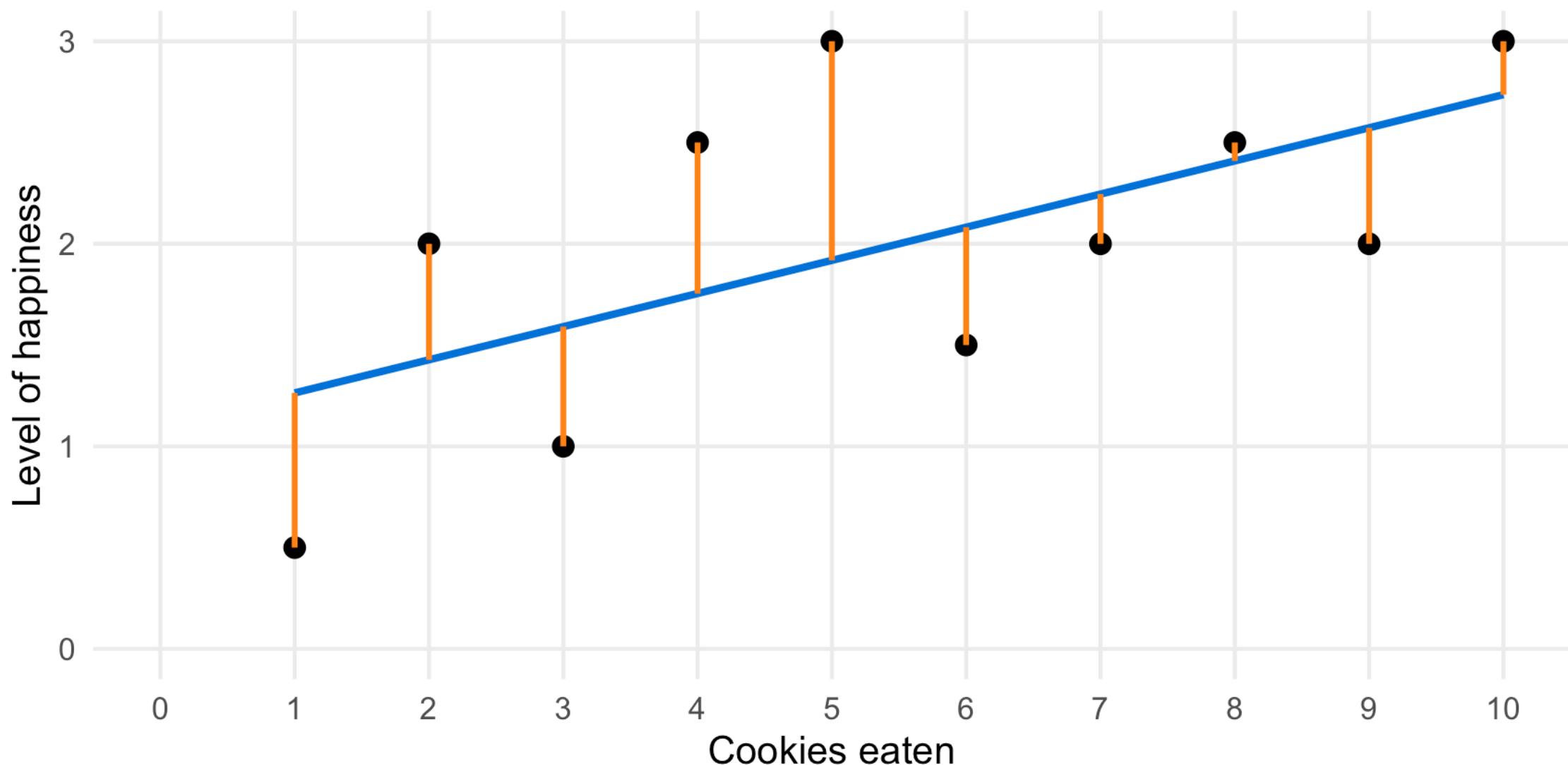
```
## [38;5;246m# A tibble: 10 × 2 [39m
##       happiness cookies
##   [3m [38;5;246m<dbl> [39m [23m   [3m [38;5;246m<int> [39m
## 1 [38;5;250m 1 [39m          0.5          1
## 2 [38;5;250m 2 [39m          2          2
## 3 [38;5;250m 3 [39m          1          3
## 4 [38;5;250m 4 [39m          2.5          4
## 5 [38;5;250m 5 [39m          3          5
## 6 [38;5;250m 6 [39m          1.5          6
## 7 [38;5;250m 7 [39m          2          7
```











Distance from line

1

0

-1

0

1

2

3

4

5

6

7

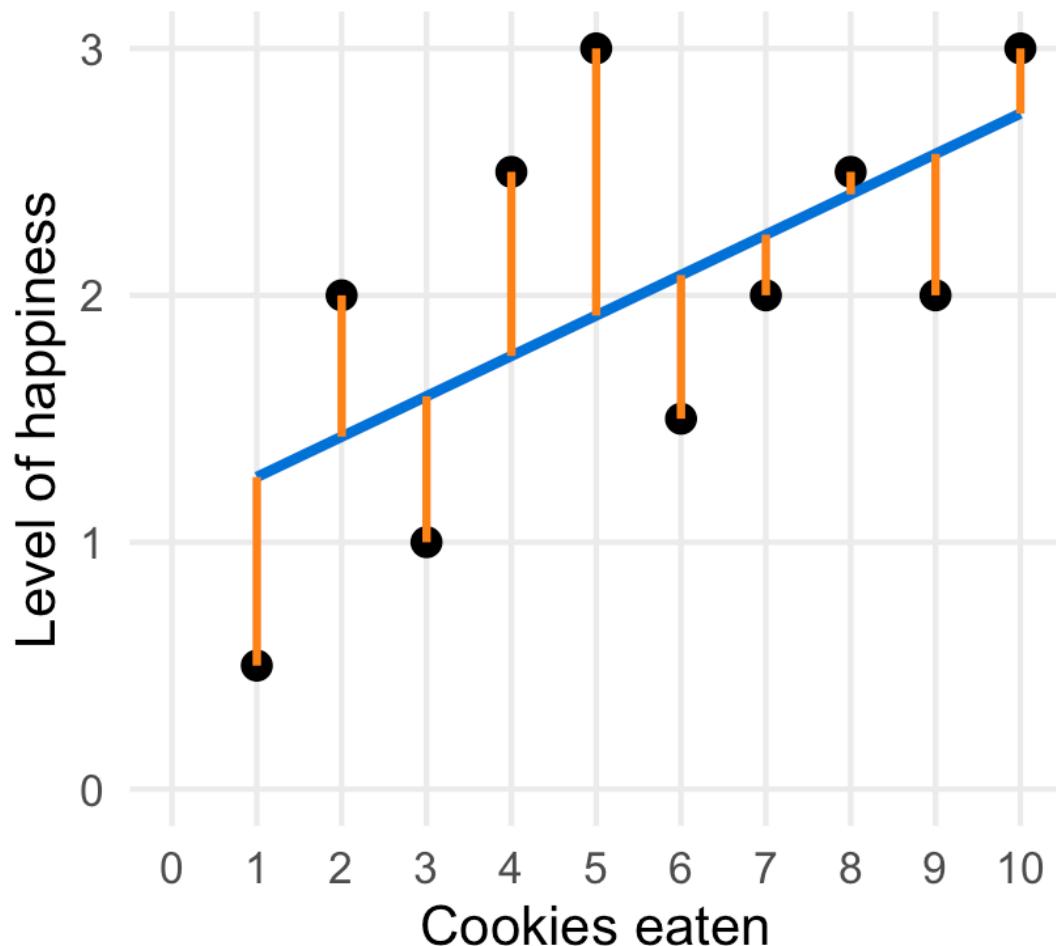
8

9

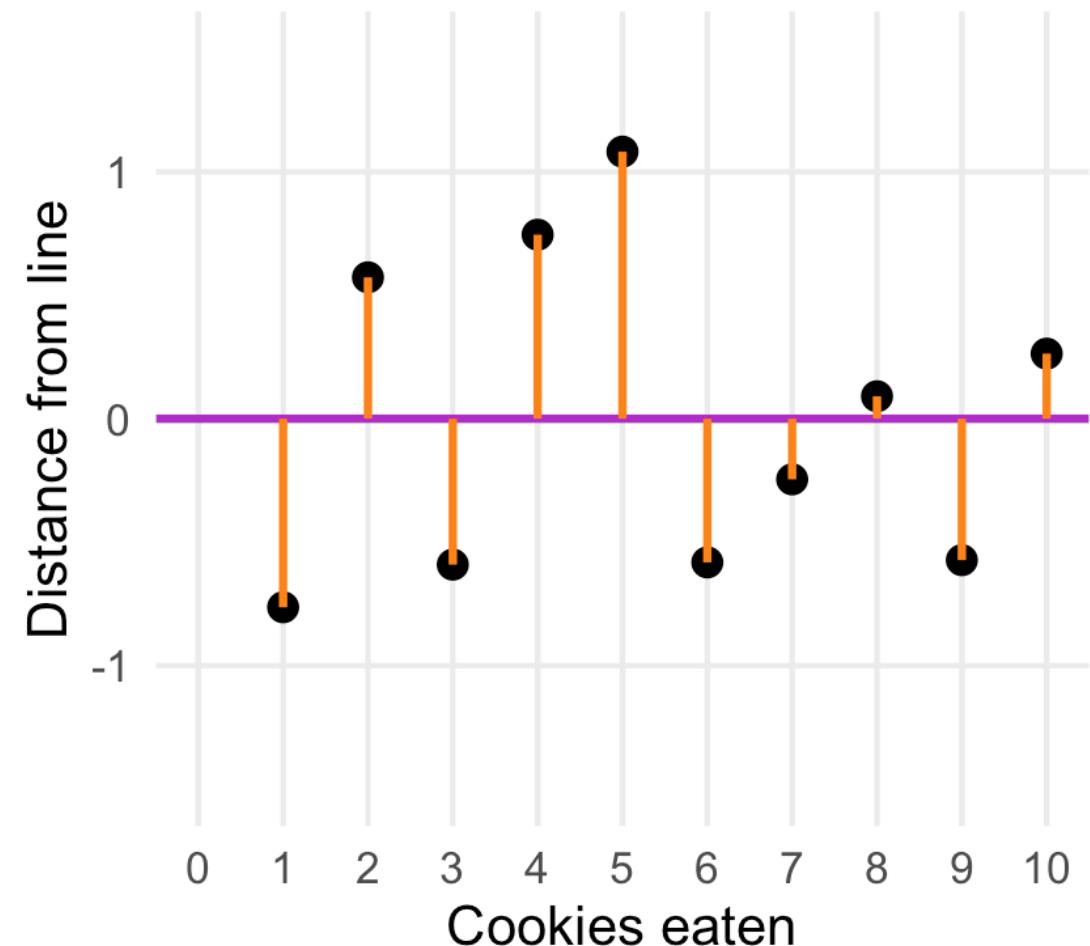
10

Cookies eaten

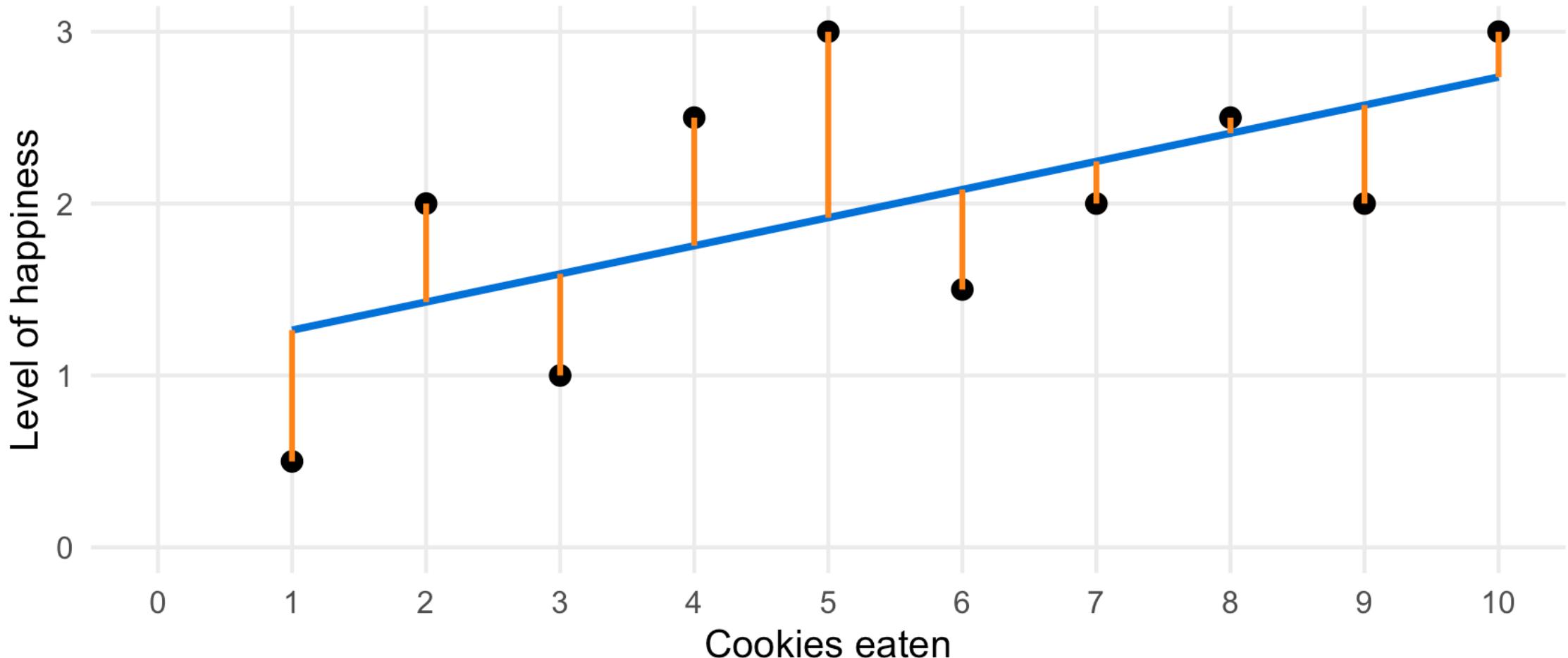
## Cookies and happiness



## Residual errors



# Ordinary least squares (OLS) regression



# Lines, Greek, and regression

# Drawing lines with math

$$y = mx + b$$

---

$y$  A number

$x$  A number

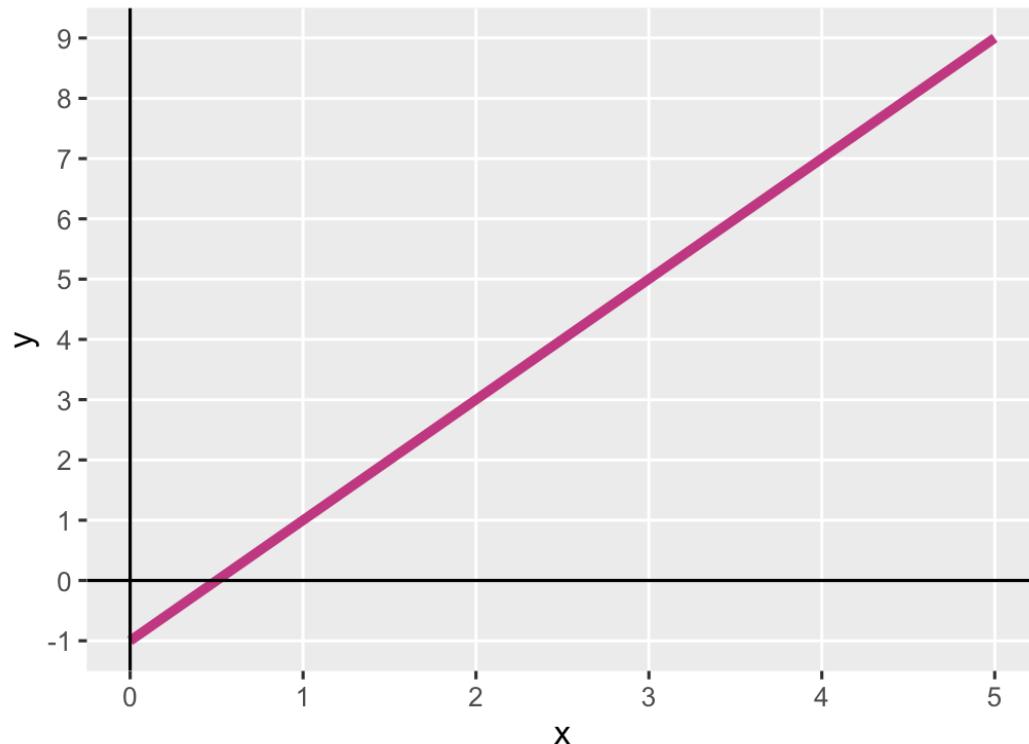
$m$  Slope ( $\frac{\text{rise}}{\text{run}}$ )

$b$  y-intercept

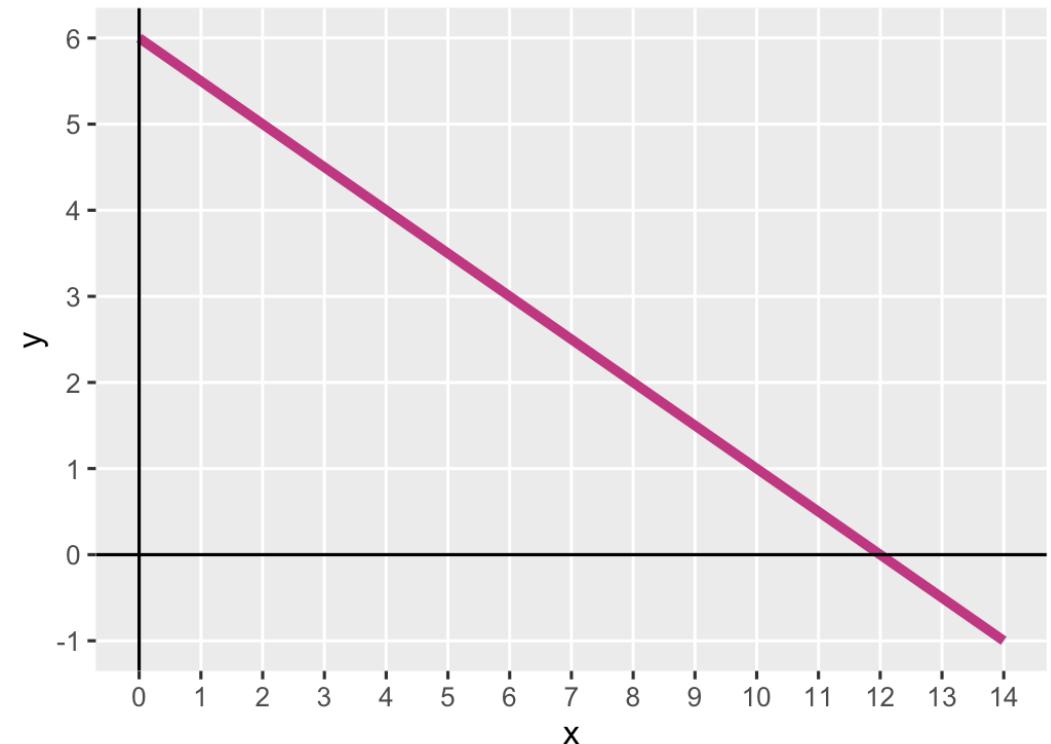
---

# Slopes and intercepts

$$y = 2x - 1$$



$$y = -0.5x + 6$$



# Greek, Latin, and extra markings

Statistics: use a sample to make inferences about a population

## Greek

Letters like  $\beta_1$  are the **truth**

Letters with extra markings like  $\hat{\beta}_1$  are our **estimate** of the truth based on our sample

## Latin

Letters like  $X$  are **actual data** from our sample

Letters with extra markings like  $\bar{X}$  are **calculations** from our sample

# Estimating truth

Data → Calculation → Estimate → Truth

|             |                              |
|-------------|------------------------------|
| Data        | $X$                          |
| Calculation | $\bar{X} = \frac{\sum X}{N}$ |
| Estimate    | $\hat{\mu}$                  |
| Truth       | $\mu$                        |

$$X \rightarrow \bar{X} \rightarrow \hat{\mu} \xrightarrow{\text{hopefully}} \mu$$

# Drawing lines with stats

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \varepsilon$$

---

|     |                 |                           |
|-----|-----------------|---------------------------|
| $y$ | $\hat{y}$       | Outcome variable (DV)     |
| $x$ | $x_1$           | Explanatory variable (IV) |
| $m$ | $\hat{\beta}_1$ | Slope                     |
| $b$ | $\hat{\beta}_0$ | y-intercept               |
|     | $\varepsilon$   | Error (residuals)         |

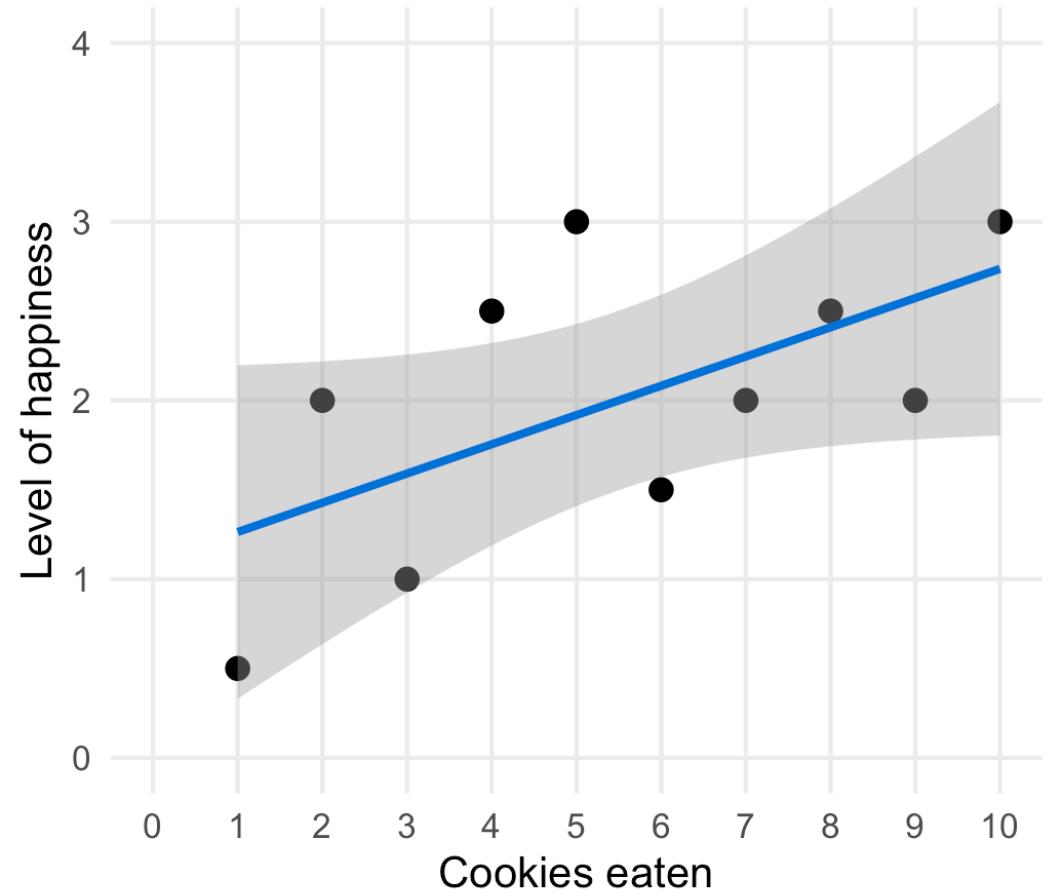
---

(most of the time we can get rid of markings on Greek and just use  $\beta$ )

# Modeling cookies and happiness

$$\hat{y} = \beta_0 + \beta_1 x_1 + \varepsilon$$

$\widehat{\text{happiness}} =$   
 $\beta_0 + \beta_1 \text{cookies} + \varepsilon$



# Building models in R

```
name_of_model <- lm(<Y> ~ <X>, data = <DATA>)

summary(name_of_model) # See model details
```

```
library(broom)

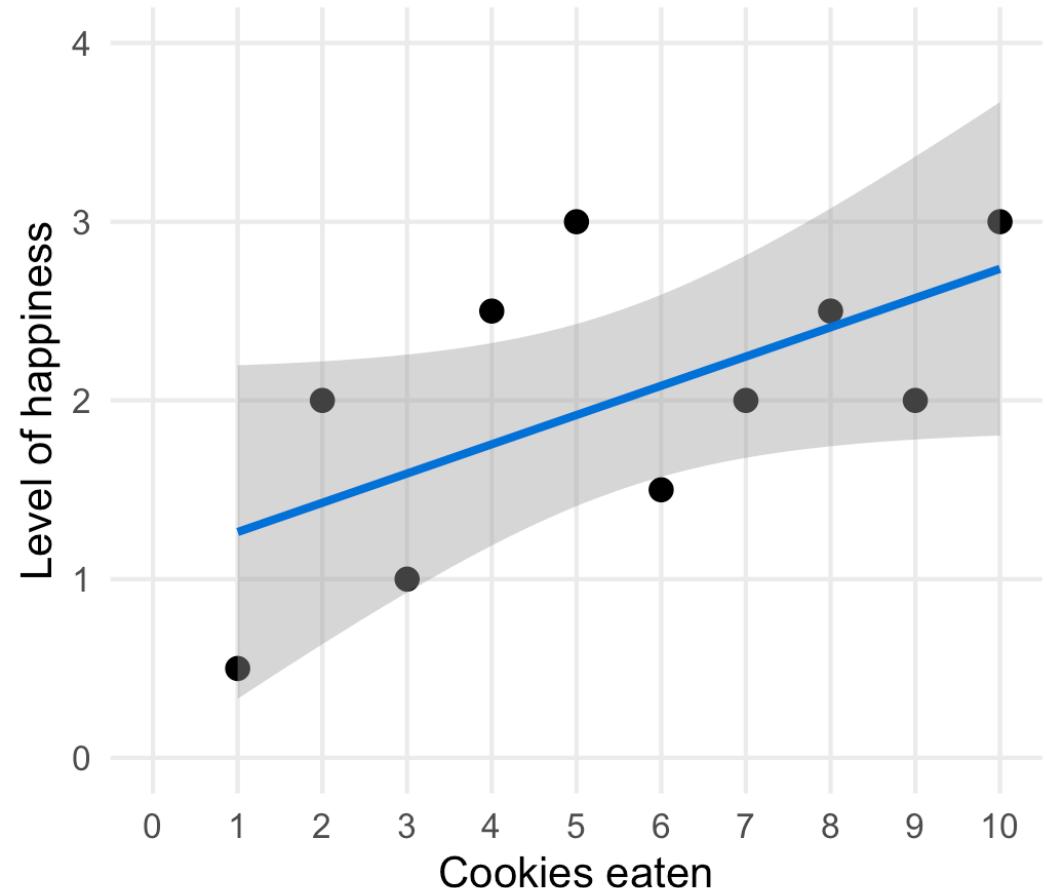
# Convert model results to a data frame for plotting
tidy(name_of_model)

# Convert model diagnostics to a data frame
glance(name_of_model)
```

# Modeling cookies and happiness

$$\widehat{\text{happiness}} = \beta_0 + \beta_1 \text{cookies} + \varepsilon$$

```
happiness_model <-  
  lm(happiness ~ cookies,  
      data = cookies_data)
```



# Modeling cookies and happiness

.small-code[

```
tidy(happiness_model, conf.int = TRUE)
```

```
## [38;5;246m# A tibble: 2 × 7 [39m
##   term      estimate std.error statistic p.value conf.low conf.high
##   [38;5;246m<chr> [39m [23m           [38;5;246m<dbl> [3
## 1 [38;5;250m1 [39m (Intercept)     1.1       0.470      2.34   0.0
## 2 [38;5;250m2 [39m cookies        0.164     0.075 [4m8 [24m      2
```

]

.small-code[

# Translating results to math

.pull-left[

.small-code[

```
## [38;5;246m# A tibble: 2 × 2 [39m
##   term      estimate
##   [3m [38;5;246m<chr> [39m [23m          [3m [38;5;246m<dbl> [3
##   [38;5;250m1 [39m (Intercept)     1.1
##   [38;5;250m2 [39m cookies        0.164
```

]

$\widehat{\text{happiness}} =$

# Template for single variables

A one unit increase in X is *associated with* a  $\beta_1$  increase (or decrease) in Y, on average

$$\widehat{\text{happiness}} = \beta_0 + \beta_1 \text{cookies} + \varepsilon$$

$$\widehat{\text{happiness}} = 1.1 + 0.16 \times \text{cookies} + \varepsilon$$

# Multiple regression

We're not limited to just one explanatory variable!

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \varepsilon$$

```
car_model <- lm(hwy ~ displ + cyl + drv,  
                  data = mpg)
```

$$\widehat{\text{hwy}} = \beta_0 + \beta_1 \text{displ} + \beta_2 \text{cyl} + \beta_3 \text{drv:f} + \beta_4 \text{drv:r} + \varepsilon$$

# Modeling lots of things and MPG

.small-code[

```
tidy(car_model, conf.int = TRUE)
```

```
## [38;5;246m# A tibble: 5 × 7 [39m
##   term      estimate std.error statistic p.value conf.low conf.high
##   [3m [38;5;246m<chr> [39m [23m           [3m [38;5;246m<dbl> [3
##   [38;5;250m1 [39m (Intercept)     33.1      1.03     32.1    9.49
##   [38;5;250m2 [39m displ            -3.78     1.58    -24.7    -4.38
##   [38;5;250m3 [39m cyl             -0.574    0.859    -0.661   0.513
##   [38;5;250m4 [39m drvf            5.04      0.513     9.83   3.07
##   [38;5;250m5 [39m drvr            4.89      0.712     6.86   6.20
```

# Sliders and switches

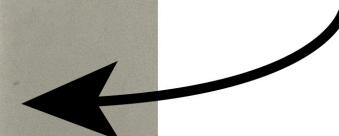


# Sliders and switches

**Categorical  
variables**



**Continuous  
variables**



# Filtering out variation

**Each X in the model explains  
some portion of the variation in Y**

**Interpretation is a little trickier,  
since you can only ever move  
one switch or slider at a time**

# Template for continuous variables

*Holding everything else constant, a one unit increase in  $X$  is associated with a  $\beta_n$  increase (or decrease) in  $Y$ , on average*

$$\widehat{\text{hwy}} = 33.1 + (-1.12) \times \text{displ} + (-1.45) \times \text{cyl} + (5.04) \times \text{drv:f} + (4.89) \times \text{drv:r} + \varepsilon$$

On average, a one unit increase in cylinders is associated with 1.45 lower highway MPG, holding everything else constant

# Template for categorical variables

*Holding everything else constant,  $Y$  is  $\beta_n$  units larger (or smaller) in  $X_n$ , compared to  $X_{\text{omitted}}$ , on average*

$$\widehat{\text{hwy}} = 33.1 + (-1.12) \times \text{displ} + (-1.45) \times \text{cyl} + (5.04) \times \text{drv:f} + (4.89) \times \text{drv:r} + \varepsilon$$

On average, front-wheel drive cars have 5.04 higher highway MPG than 4-wheel-drive cars, holding everything else constant

# Economists and Greek letters

Economists like to assign all sorts of Greek letters to their different coefficients

$$Y_i = \alpha + \beta P_i + \gamma A_i + e_i$$

Equation 2.1 on p. 57 in *Mastering 'Metrics*

$i$  = an individual

$\alpha$  ("alpha") = intercept

$\beta$  ("beta") = coefficient just for *treatment*, or the causal effect

$\gamma$  ("gamma") = coefficient for the *identifying variable*  
(being in Group A or not)

# Economists and Greek letters

$$\ln Y_i = \alpha + \beta P_i + \gamma A_i + \delta_1 \text{SAT}_i + \delta_2 \text{PI}_i + e_i$$

Equation 2.2 on p. 61 in *Mastering 'Metrics*

$i$  = an individual

$\alpha$  ("alpha") = intercept

$\beta$  ("beta") = coefficient just for *treatment*, or the causal effect

$\gamma$  ("gamma") = coefficient for the *identifying variable*  
(being in Group A or not)

$\delta$  ("delta") = coefficient for *control variables*

# These are all the same thing!

$$\ln Y_i = \alpha + \beta P_i + \gamma A_i + \delta_1 \text{SAT}_i + \delta_2 \text{PI}_i + e_i$$

$$\ln Y_i = \beta_0 + \beta_1 P_i + \beta_2 A_i + \beta_3 \text{SAT}_i + \beta_4 \text{PI}_i + e_i$$

```
lm(log(income) ~ private + group_a + sat + parental_income,  
  data = income_data)
```

**(I personally like the all- $\beta$  version instead of using like the entire Greek alphabet, but you'll see both varieties in the real world)**

# Null worlds and statistical significance

# "hopefully"

How do we know if our estimate is the truth?

$$X \rightarrow \bar{X} \rightarrow \hat{\mu} \xrightarrow{\text{hopefully}} \mu$$

# Are action movies rated higher than comedies?

| Data        | IMDB ratings                                  | $D$                                                                             |
|-------------|-----------------------------------------------|---------------------------------------------------------------------------------|
| Calculation | Average action rating - average comedy rating | $\bar{D} = \frac{\sum D_{\text{Action}}}{N} - \frac{\sum D_{\text{Comedy}}}{N}$ |
| Estimate    | $\bar{D}$ in a sample of movies               | $\hat{\delta}$                                                                  |
| Truth       | Difference in rating for <i>all</i> movies    | $\delta$                                                                        |

.left-code[

```
head(movie_data)
```

```
## [38;5;246m# A tibble: 6 × 4 [39m
##   title                  year rating genre
##   [38;5;246m<chr> [39m [23m           [38;5;246m<ir
##   [38;5;250m1 [39m Tarzan Finds a Son!    [4m1 [24m939    6.4 Action
##   [38;5;250m2 [39m Silmido                 [4m2 [24m003    7.1 Action
##   [38;5;250m3 [39m Stagecoach              [4m1 [24m939    8.0 Action
##   [38;5;250m4 [39m Diamondbacks          [4m1 [24m998    1.9 Action
##   [38;5;250m5 [39m Chaos Factor, The     [4m2 [24m000    4.5 Action
##   [38;5;250m6 [39m Secret Command        [4m1 [24m944    7.0 Action
```

# Null worlds

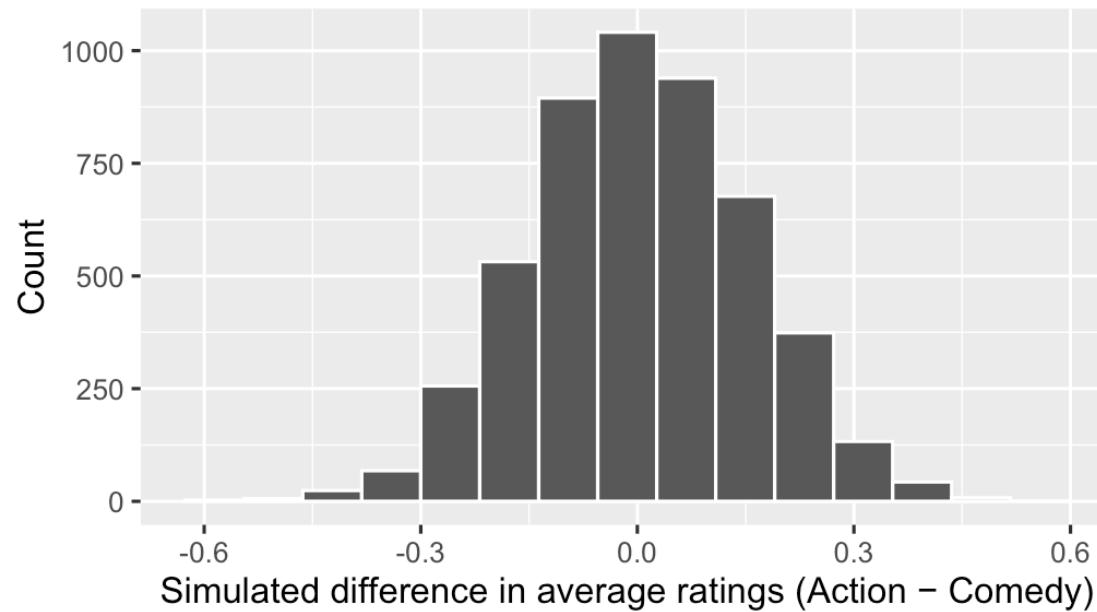
**What would the world look like  
if the true  $\delta$  was really 0?**

Action movies and comedies wouldn't all have the same rating,  
but on average there'd be no difference

# Simulated null world

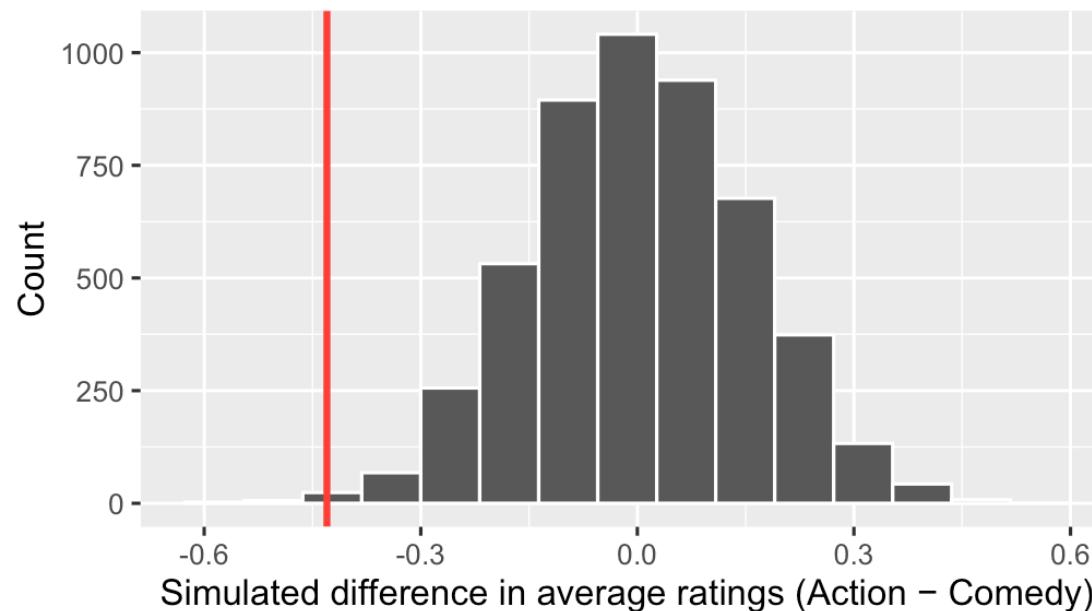
Shuffle the rating and genre columns  
and calculate the difference in ratings across genres

Do that  $\uparrow$  5,000 times



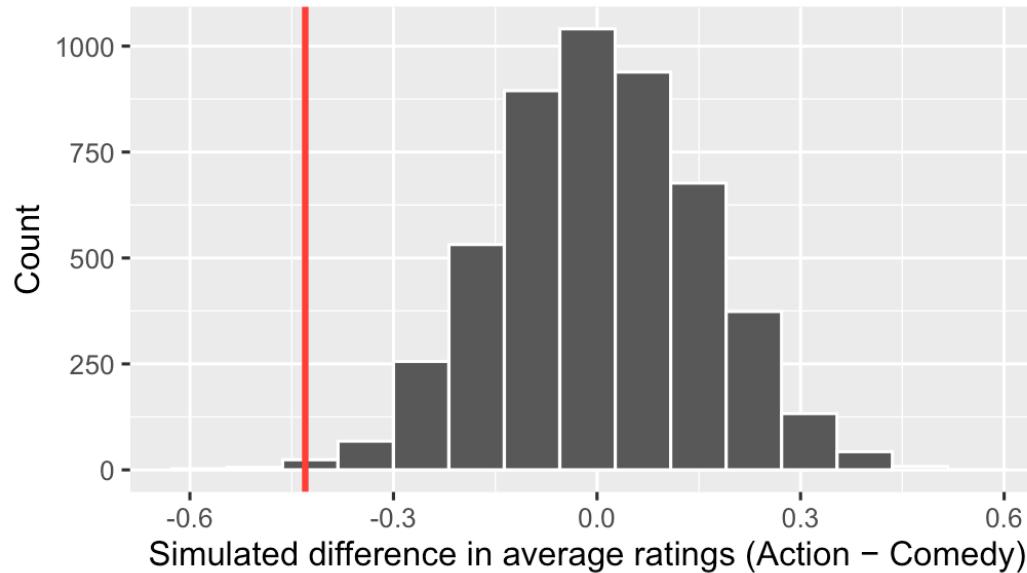
# Check $\delta$ in the null world

Does the  $\delta$  we observed fit well in the world where it's actually 0?



That seems fairly rare for a null world!

# How likely is that $\delta$ in the null world?



What's the chance that we'd see that red line in a world where there's no difference?

$p = 0.005$

That's really really low!

# p-values

That 0.005 is a p-value

**p-value = probability of seeing something  
in a world where the effect is 0**

The  $\delta$  we measured doesn't fit well  
in the null world, so it's most likely not 0

We can safely say that there's a difference between the two groups. Action movies are rated lower, on average, than comedies

# Significance

If  $p < 0.05$ , there's a good chance  
the estimate is not zero and is "real"

If  $p > 0.05$ , we can't say anything

That doesn't mean that there's no effect!  
It just means we can't tell if there is.

# No need for all that simulation

This simulation stuff is helpful for the intuition behind a p-value, but you can also just interpret p-values in the wild

```
t.test(rating ~ genre, data = movie_data)
```

```
##  
##    Welch Two Sample t-test  
##  
## data: rating by genre  
## t = -2.8992, df = 388.75, p-value = 0.003953  
## alternative hypothesis: true difference in means between group Action and group Comedy is not e  
## 95 percent confidence interval:  
## -0.7299913 -0.1400087  
## sample estimates:  
## mean in group Action mean in group Comedy  
##                 5.407                 5.842
```

# Slopes and coefficients

You can find a p-value for any Greek letter estimate, like  $\beta$  from a regression

$$\hat{\beta} \xrightarrow{\text{hopefully}} \beta$$

In a null world, the slope ( $\beta$ ) would be zero

p-value shows us if  $\beta=\text{hat}$  would fit in a world where  $\beta$  is zero

# Regression and p-values

.small-code[

```
tidy(car_model, conf.int = TRUE)
```

```
## [38;5;246m# A tibble: 5 × 7 [39m
##   term      estimate std.error statistic p.value conf.low conf.high
##   [38;5;246m<chr> [39m [23m           [38;5;246m<dbl> [38;5;246m<dbl> [38;5;246m<dbl> [38;5;246m<dbl> [38;5;246m<dbl>
##   [38;5;250m1 [39m (Intercept)     33.1        1.03     32.1     9.49
##   [38;5;250m2 [39m displ          -31m1 [39m [31m. [39m [31m12 [38;5;246m<dbl> [38;5;246m<dbl>
##   [38;5;250m3 [39m cyl           -31m1 [39m [31m. [39m [31m45 [38;5;246m<dbl> [38;5;246m<dbl>
##   [38;5;250m4 [39m drvf          5.04       0.513     9.83    3.07
##   [38;5;250m5 [39m drvr          4.89       0.712     6.86    6.20
```